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Main interface problems with high-power on target

= Uniform beam spot

> To prolong lifetimes of target vessel and proton beam
window (radiation damage); cooling;

= Back-streaming neutrons

> Very high flux, damage to devices in the beam transport
line; radiation shielding burden

= Proton beam windows

> Lifetime due to irradiation, cooling problem, multiple
scattering effect

= Beam monitoring

> Monitoring beam centering and profile at target; lifetime
and shielding of probes in a radiation-hard region



= Layout considerations

> For spallation neutron sources: usually horizontal beam
Injection. The proton channel is within the target-
iInstrument hall, heavy shielding wall is needed.

= A bending magnet close to targetis preferred to treat back-
streaming neutrons, but not with the case of a muon target
present (momentum spread too large).

» For ADS: usually vertical beam injection, channel
shielding compatible with the transmuter’'s maintenance
also from the top.

= A bending section exists naturally

= Maintenance problems: proton channel difficult to
access after use, remote handling needed
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Beam spot uniformization methods

= Time-dependent beam spot uniformization
methods

> By using scanning or wobbling magnets, sometimes
combined with scattering foil to increase the uniformity

> Suitable for CW or long-pulse beams, perhaps not very
high beam power

> Widely used in electron beam irradiation applications
and hadron therapy
= Time-independent methods
> By using nonlinear magnets or scattering foils

> Suitable for both CW and pulsed beams, scattering foils
can be used only for low-intensity beams (proton
therapy)



Spot uniformization for high power beams

* For pulsed beams, only nonlinear magnets can be
used
> Folding halo particles onto beam core

> Flat beam profiles at nonlinear magnets to decouple the
two transverse phase planes

> Phase advances between the non-linear magnets and
the target should be close to +x or +2x N AN
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> More conventional: single octupole or a pair of octupole
and dodecapole for each plane (horizontal or vertical)

= Single octupole: simpler, but difficult to balance beam core and
halo, may have larger beam losses

= Pair of octupole and dodecapole: can make balance between
beam core and halo, difficult to fabricate large-aperture
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> Step-like field magnets: a pair of SFMs has similar
performance to the OCTU-DODECA, but easier to adapt
irregular distributions (e.g. something like dual-Gaussian);
much cheaper; narrow magnet gaps (merit or demerit?)
= Cutand pastin the phase space




= Simplified multipole magnets: a new idea; different
combinations of anti-symmetric 2nd, 314, 4th gnd 5t
-order field magnets, recently proposed at IHEP

> Special structure allowing any-order anti-symmetric
multipole magnets

» Compared with OCTU-DODECA combination, SEXTU-
DECA combination looks to be better in performance
and cheaper in cost
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Simulation results at ADS RFQ beam test line:

Left: step-like field magnets;

Right: simplified 2nd order and 4rd order magnets



= For CW beams (ADS application), it might be
possible to use wobbling or scanning magnets

> A round beam spot is needed (actual target/transmuter
design), which is difficult to obtain with non-linear
magnets=> more effort is needed

> MYRRHA: raster scanning in hundreds Hz in X-Y

> China-ADS: amplitude-modulated rotating dipole field in
kHz (technically difficult)

> It is difficult to produce uniform beam spot in neutron
generation time of about 1 ms

k=18, ¢ xy=2.5mm, samples=6000000, resolution=100"100,Integral time=1ms
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= My preference

> Pulsed linac beam: step-like field magnets=>» simplified
SEXTU+DECA=» standard OCTU+DODECA

= For a large beam spot or across an achromatic bending section,
SFM preferred

= For a relatively small beam spot or lower beam energy,
simplified SEXTU+DECA preferred
> Ring beam with sparse halo or dual-Gaussian: SFM
preferred

> CW linac beam: more effort still needed to meet the
ADS requirement, e.g. producing round beam spot by
coupling X-Y intentionally. (different methods are under
study)



= A test result using two pairs of simplified
SEXTU+ OCTU magnets: corner rounded
(intentionally induced coupling)

(IHEP 3.5 MeV RFQ beam, by Zheng Yang)
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Back-streaming neutrons

= Back-streaming neutrons along the incoming
proton channel are very intense, very harmful to
the devices In the proton beam line and also
makes the shielding of the channel more
complicated.

> As an example, 0.5 MW beam @CSNS producing a
dose rate of about 90 Gy/h at 9 m from the target
without collimation, corresponding to a lifetime of 4.7
years for epoxy coills.

> Magnets, beam diagnostics, vacuum devices, cables etc.



= |t Is Important to have near-target collimators. A
neutron stopper after a bending magnet is also

recommended.

> Collimators at proton beam waists
are very efficient in shielding back-

neutrons. e
: S
> A dipole followed by a neutron b dw s
: i S
stopper can localize back neutrons T e T
A i i,
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DIStance | \\ Exist Cl:!llil‘lla‘tl:!rs \
(Magnet) [mSv/h, @20cm] [mSv/h, @20cm] LR et
8.9 m (Q30D) 598.6 963648 1610 B
12.3m (Q29D) 790.8 450360 569 S
17.6m (Q28A) 10614.8 270677 26
18.4m (RT_BH) 9984.7 105362 11



LRI vumq nmrq rvuu-l vvm-q LRELLL B R Rt Rl R L L

- a ]

» CSNS exploits back neutrons o [
as White Neutron Source N

10 F ."4“”;* 1

(about 47% neutrons >1 MeV)

3
J. uul ol ol uul sul ™ uud ol ™ i sl Bl
= Atendstation(80m) & no moderato =-
[ —A— Atendstation(80m) & water at be: d ng magnet b =
«— Atendstation(80m) & heavy water at bending magnet
*— At endstation(80m) & liquid hydrogen at bending magnet

W

o
l
*—-V_F# Y
ey gt ¥
YR W fonys

Hoisting portal =)

Neutron Intensity/lethargy [n/cmzlproton]

PR ENTTTY EEPETTIY ERTTIT BT EPEeTrr” EPWTTITT BT R EWTrrre Erareree | ......!
10° 10® 107 10° 10° 10* 10® 10° 10" 10° 10' 10® 10°
Neutron energy (MeV) _

n channel Collimator 1
Collimator 2

Back-stfreaming neu g

; Ex”:
Endstation 2| | I "EX"\AB@
Endstation |

Contral ) : 1 section
el ieam CSNS experimental hall Section downstream bending T-section
< g >l
-
= ; 1
Quadruples/
correctors pairs Collimators \\ Tunnel walls

Fig. 4. Model of SNS RTBT portion, elevation view.

Concrete  Concrete support ~ Flight tube Flight tube steel

> SNS uses more Sophisticated walls,!\“ structure \:ncreteshielding\ shielding
shielding design (no collimators o\ || \’E .
close to target and no neutron v

Stopper) VSICC] Magnet’ s\/ High- rlds\ Beam \ Flight

shielding agnets | tube tube

Fig. 5. Model of SNS RTBT T-section and flight tube section, elevation
view.



= C-ADS back neutrons: very critical

> Large proton beam power (15 MW), large beam spot
(>$200 mm)

> Direction: sky (problem for
environment)

= Preliminary considerations
> Collimators at waists
> Neutron stopper
> Enhanced shielding

88—




Proton beam windows

= With high power beams, proton beam windows
(PBW) often pose technical problems, even more
critical with beams of lower energy or pulsed
beams

> Heat deposit: lonization process results in large heat
deposit in PBW.

= \Water cooling necessary

= Aluminum alloy preferred due to lighter mass and good thermal

conductivity (J-PARC and CSNS, c.f. Inconel 718 used at ISIS
and SNS)

= Different beams, different structures: single layer (indirect

cooling), sandwiched structure and multi-pipe structure from
hundreds kW to MW

= Pulsed beam is relatively more difficult than CW beam
(temperature rise and larger pressure in a pulse)



Aluminum alloy

Material ( A5083-0) Inconel 718 Stainless steel 316L

M . I Density 2.66 g/cc 8.19 g/cc 7.99 glcc

ateria Thermal conductivity 117 Wim-K 11.4 W/m-K 21.4 Wim-K

Linear, CTE

and (coefficient of thermal 16.0um/m-° C 13.0um/m-° C 19.9 m/m-° C
expansion)

Stru Ctu e Specific heat capacity 0.900 J/g-° C 0.435J/g-° C 0.500 J/g-° C
Tensile strength, yield 145 MPa 980 MPa 290 MPa
USSR SHREmET, 290 MPa 1100 MPa 558 MPa
Ultimate
Modulus of elasticity 70.3 GPa 204.9GPa 193 GPa

@ water

N\

-

~

(a) single-layer structure (b) sandwich structure  (c) multi-pipe structure



Thick wall
to be welded to
the module structure

Made from

single aluminum block Machined by electrical

discharge or computerised
numerical control milling

> Radiation damage:

= Both aluminum alloy and Inconel are good materials
for radiation resistance (20 dpa and 10 dpa, resp.)

= More or less uniform, not too small spot at PBW Is
Important (better close to target)

= Also suffering irradiation from back-streaming
neutrons (especially flanges)

= Replaceable but better with longer lifetime (a few
years), a plug inside target shielding wall



> Multiple scattering: PBW deteriorates beam
guality at target by multiple scattering effect.

= | arger mass thickness, lower energy and longer
distance from target=>» more serious (also favor Al-alloy)

= Fraction beam outside the target: e.g. about 4% @SNS
= Damage target vessel (lateral)
= Heating cold moderators

aaaaaaaa



= Some preferences

> Aluminum alloy is an excellent material for PBW, but the
maximum temperature should be controlled below 90-
100°C to maintain its good mechanical properties.

> Structures

= Single-layerindirect cooling structure is the simplest one, but
perhaps stands for beam power less than 200 kW (in GeV level)

= Sandwiched structure can stand for beam power up to 1-2 MW
= Multiple-pipe structure can stand for beam power up to 10-20
MW depending on beam size
> Location: it is better to locate PBW closer to target to
reduce the peak current density and scattering effect,
e.g. 1-2m.



Beam diagnostics In radiation-hard region

= As high-power beams are very destructive If they
deviate from the designed footprint (beam center
and spot size), online monitoring IS necessary for
the beam on target. Tuning procedures (especially
with nonlinear magnets) also need beam monitoring.

= Online monitoring (BPM, profile) in radiation-hard
region is difficult: probes, electronics, mechanical
driving system
> Probes: radiation-resistant, non-interceptive

> Electronics: light transfer preferred (electronics outside
channel, residual gas), how about BPM/harps?

> Driving system (harps): remote control, easy demounting



= Tuning diagnostics
> During beam commissioning and beam setup, BPMs
and profile monitors are needed for the optics setup.
They stay in the proton channel and suffer intense back-
streaming neutron irradiation.
= Footprint monitor at target
> VIMOS (tantalum mesh)
@PSI
> Coated frame @SNS

> Thermal image @ISIS

= Profile monitor
> Harps: @SNS, J-PARC
> Residual gas — light (ESS@2002, IFMIF)

P-Beam




Summary

= Major problems concerning high-power beam on
target are reviewed.

= Beam less than a few MW looks to be manageable,
but it needs more efforts to solve ADS cases.

= |nternational collaborations are needed to tackle
the problems, especially with mult-MW beams in

the future.



Thank you for attention!



Comparison among nonlinear magnets for
spot uniformization

SFM

Single Octu
Octu+Dodeca
Simplified

Sextu+Deca
(or Octu)

Pros

Very cheap (cost + electricity)
Almost no beam loss

Space saving (very short)

Neat beam at waist (collimation)
Small gap (as neutron collimator)

Simple to apply (tuning procedure)
Modest cost

Good performance
Modest beam loss

Cheap
Very good performance
Modest beam loss

cons

Slightly less tunability

Small gap (tuning)

More complicated
vacuum chamber

Worse performance
Beam loss important

High cost
More space

In between SFM and
Octu+Dodeca
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CSNS-

(100 kW)

mmmmm

mmmmm

Dual-Gaussian _ Raw Real
Emitt ) .
(+3c, tmm.mrad) portion | portion |-
Core beam 60 97% 98.6% -
Halo beam 250 3% 1.4%
B (T) L (m) X0 (mm) b (/mm)
SFM-X1 0.135 0.20 35.8 0.14
SFM-X2 0.120 0.15 59.7 0.15
SFM-Y1 0.100 0.20 28.6 0.16
5 SFM-Y2 0.133 0.18 47.7 0.14




CSNS-III

(500 kW)

mmmmm

mmmmm

Dual-Gaussian _ Raw Real
Emitt ) .
(+3c, tmm.mrad) portion | portion
Core beam 105 97% 98.9%
Halo beam 250 3% 1.1%
B (T) L (m) X0 (mm) b (/mm)
SFM-X1 0.095 0.20 35.8 0.14
SFM-X2 0.060 0.15 59.7 0.15
SFM-Y1 0.060 0.20 28.6 0.16
35 SFM-Y2 0.090 0.18 47.7 0.14




= When halo emittance Is
very large, one can

consider using a
step

= Right: ESS-2002
two steps for ring

third

. with
beam
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